6,151 research outputs found

    Explicitly correlated plane waves: Accelerating convergence in periodic wavefunction expansions

    Full text link
    We present an investigation into the use of an explicitly correlated plane wave basis for periodic wavefunction expansions at the level of second-order M{\o}ller-Plesset perturbation theory (MP2). The convergence of the electronic correlation energy with respect to the one-electron basis set is investigated and compared to conventional MP2 theory in a finite homogeneous electron gas model. In addition to the widely used Slater-type geminal correlation factor, we also derive and investigate a novel correlation factor that we term Yukawa-Coulomb. The Yukawa-Coulomb correlation factor is motivated by analytic results for two electrons in a box and allows for a further improved convergence of the correlation energies with respect to the employed basis set. We find the combination of the infinitely delocalized plane waves and local short-ranged geminals provides a complementary, and rapidly convergent basis for the description of periodic wavefunctions. We hope that this approach will expand the scope of discrete wavefunction expansions in periodic systems.Comment: 15 pages, 13 figure

    Pulsed laser deposition for growth of high quality epitaxial garnet films for low threshold waveguide lasers

    No full text
    Pulsed laser deposition (PLD) is a mature technique capable of producing extremely high quality epitaxial single crystalline films. We have grown Nd:doped garnet films of GGG (Gd The talk will summarise our progress using conventional (single beam) PLD in thin-film and waveguide growth, using both nanosecond and femtosecond lasers, and also introduce our new directions in tri-beam PLD (three targets, three lasers) for growth of some interesting, complex and perhaps impossible structures, such as Gaussian doping, internal voids and even helically doped structures

    Green-pumped, picosecond MgO:PPLN optical parametric oscillator

    No full text
    We investigate the performance of a magnesium-oxide-doped periodically poled lithium niobate crystal (MgO:PPLN) in an optical parametric oscillator (OPO) synchronously-pumped by 530nm, 20ps, 230MHz pulses with an average power of up to 2W from a frequency-doubled, gain-switched laser diode seed and a multi-stage Yb:fiber amplifier system. The OPO produces ~165mW (signal, 845nm) and ~107mW (idler, 1421nm) of average power for ~1W of pump power and can be tuned from ~800nm to 900nm (signal) and 1.28µm to 1.54µm (idler). Observations of photo-refraction and green-induced infrared absorption (GRIIRA) in different operational regimes of the MgO:PPLN OPO are described and the role of peak intensity and average power are investigated, both with the aim to find the optimal operating regime for pulsed systems

    Generation of mode-locked optical pulses at 1035 nm from a fiber Bragg grating stabilized semiconductor laser diode

    No full text
    We report the generation of transform-limited, ~18 ps optical pulses from a fiber Bragg grating (FBG) stabilized semiconductor laser diode. Up to 7.2 pJ of pulse energy and a peak power of 400mW were achieved when operating at a repetition frequency of 832.6 MHz, a multiple of the cavity (diode + FBG) free spectral range (FSR). A small detuning in the repetition frequency resulted in broader optical pulses. We have shown experimentally the transition from a gain-switched regime of operation to mode-locked operation once the injection current modulation frequency is set to match a harmonic of the cavity FSR. The transition also results in a reduction in the timing jitter of the optical pulses

    Strategic Sales Conversations As A Foundation For Effective Partnership Selling

    Get PDF
    This paper presents a new sales organization tool, strategic sales conversations, that can be used to enhance relationships with customers. Strategic sales conversations are an adaptation of strategic conversations in an inter- and intra- organizational context in which the selling firm is attempting to utilize open and honest communication to better understand the long-term needs of the buying organization.  A process model of strategic sales conversations is developed and its implications are discussed.&nbsp

    High-energy, near- and mid-IR picosecond pulses generated by a fiber-MOPA-pumped optical parametric generator and amplifier

    No full text
    We report a high-energy picosecond optical parametric generator/amplifier (OPG/A) based on a MgO:PPLN crystal pumped by a fiber master-oscillator-power-amplifier (MOPA) employing direct amplification. An OPG tuning range of 1450-3615nm is demonstrated with pulse energies as high as 2.6µJ (signal) and 1.2µJ (idler). When seeded with a ~100 MHz linewidth diode laser, damage-limited pulse energies of 3.1µJ (signal) and 1.3µJ (idler) have been achieved and the signal pulse time-bandwidth product is improved to ~2 times transform-limited. When seeded with a 0.3nm-bandwidth filtered amplified spontaneous emission source, crystal damage is avoided and maximum pulse energies of 3.8µJ (signal) and 1.7µJ (idler) are obtained at an overall conversion efficiency of 45%

    Fiber-laser-pumped, high-energy, mid-IR, picosecond optical parametric oscillator with a high-harmonic cavity

    No full text
    We demonstrate the generation of high-energy, mid-IR, picosecond pulses in a high-harmonic-cavity optical parametric oscillator (OPO) that has a relatively compact cavity with a length that is a small fraction of that required to match the pump repetition rate. The OPO, based on an MgO-doped periodically poled LiNbO3 crystal, is pumped by a fiber master-oscillator-power-amplifier system employing direct amplification and delivering 11µJ, 150ps pulses at 1035nm. For a 1.554-m long OPO cavity, resonating near-infrared signal pulses with a repetition rate that is the 193rd harmonic of the 1MHz pump are demonstrated. The mid-infrared idler output pulses, tunable from 2300nm to 3500nm, are generated at a 1 MHz repetition rate and have energies as high as 1.5µJ

    The climate impact of past changes in halocarbons and CO2in the tropical UTLS region

    Get PDF
    A chemistry-climate model coupled to an ocean model is used to compare the climate impact of past (1960-2010) changes in concentrations of halocarbons with those of CO2 in the tropical upper troposphere and lower stratosphere. The halocarbon contribution to both upper troposphere warming and the associated increase in lower stratospheric upwelling is about 40% as large as that due to CO2. Trends in cold-point temperature and lower stratosphere water vapor are positive for both halocarbons and CO2, and are of about the same magnitude. Trends in lower stratosphere ozone are negative, due to the increased upwelling. These increases in water vapor and decreases in lower stratosphere ozone feed back on lower stratosphere temperature through radiative cooling. The radiative cooling from ozone is about a factor of two larger than that from water vapor in the vicinity of the cold-point tropopause, while water vapor dominates at heights above 50 hPa. For halocarbons this indirect radiative cooling more than offsets the direct radiative warming, and together with the adiabatic cooling accounts for the lack of a halocarbon-induced warming of the lower stratosphere. For CO2 the indirect cooling from increased water vapor and decreased ozone is of comparable magnitude to the direct warming from CO2 in the vicinity of the cold-point tropopause, and (together with the increased upwelling) lowers the height at which CO2 increases induce stratospheric cooling, thus explaining the relatively weak increase in cold-point temperature due to the CO2 increases
    corecore